Human Factors of Transmission Operations

Summary Principles from a Collaborative Research Project

Fiona F. Tran; Antony Hilliard; Prof. Greg A. Jamieson, UT Len Johnson, IESO March 30, 2016

NERC Human Performance Conference

Research at CEL

Conviction: Skilled, knowledgeable operators are an invaluable and irreplaceable asset in safety-critical systems

- Applied Psychology
 - control interfaces
 - automation behaviour
- Systems Engineering
 - Overall Performance, Efficacy, Resilience
 - Make Workers Smarter
 - & Operations Safer

Study: Transmission Grid Operations

- Collaboration with IESO
- Questions:
 - 1. Near-term opportunities?
 - 2. Future control room requirements?
 - 3. Guiding principles?

HF Principles we concluded:

- 1. Put data in context when context can be pre-determined
- 2. Design databases to be summarized
- 3. Support parallel visual processing
- 4. Mitigate risks to signal-to-noise ratio
- 5. Support fast-expert action with consistent formatting and navigation
- 6. Develop expertise when workload is low, support it when busy
- 7. Automate the consistency maintenance of knowledge bases
- 8. Clearly distinguish between boundaries of automation responsibility
- 9. Capture operation requirements early in tool procurement or design

Parallels with Endsley's (2012) Situation Awareness principles

- 1. Put data in context when context can be predetermined
- 3. Support parallel visual processing
- 5. Support fast-expert action with consistent formatting and navigation
- 7. Automate the consistency maintenance of knowledge bases

- "#1: Organize information around goals"
- "#7: Take advantage of parallel processing capabilities"
- "#49: Have standardized display coding"
- "#45: Information sources should be consistent"

Example Method for Principles

- 1. Put data in Context
- 2. Design Databases to be Summarized

Human Factors of Grid Databases

- How to structure information for reliable human performance? Must:
 - Match mental model(s) of operators, engineers
 - Be correct, valid even for unrecognized situations
 - Be consistent within and across tools
- Method: Work Domain Analysis (Rasmussen 1986, Naikar 2013)
 - Functional modeling of system constraints
 - Psychologically relevant

Work Domain Analysis Applications

- Military (Australian Air Force)
 - AEW&C procurement & training support (Naikar & Sanderson 2001)
 - Revising Air Power Doctrine and Strategy (Treadwell & Naikar 2014)
- Aviation (TU Delft)
 - Centralized Air Traffic Control
 - Decentralized Collision Avoidance (Borst, 2016)
- Power Generation (INL, UQ)
 - Future Fast Sodium Reactor Operational Concept, Idaho National Lab (Hugo & Oxstrand 2015)
 - Hydropower Market Strategies Snowy Hydro, Australia (Memisevic et al. 2007)

Reliability Coordinators already do functional modelling

Reliability Coordinators already do functional modelling

Less-integrated levels of abstraction

Less-integrated levels of abstraction

Context from Means-Ends relations

Context from Means-Ends relations

(Duncker, 1945)

Context from Means-Ends relations

Priorities, Risk tolerance? Consequences of Faults?

Capabilities Available? Source of Faults?

Summary Overview by Part-Whole

(DeGroot 1946)

Grand master 22 pt (100%)

Master 21 pt (95%)

Expert 17 ptn (73%)

Class player 9 ptn (41%)

- Working memory may be 7 +-2 ... what?
- Experts group by functional "chunks" (Chase & Simon 1973)

Summary Overview by Part-Whole

Purposes of Grid ⇒ Balancing different NERC regulations?

"Pockets", "exposed", risky, stressed areas?

Real, Reactive components

Power Flows \Rightarrow Area Control Error \rightarrow Monitoring Areas? \rightarrow System Operating Limits \rightarrow Line flows

Interties between zones \rightarrow Grouped lines? \rightarrow Individual transmission lines \rightarrow Distribution network. Generation stations \rightarrow Generator units.

Physical Equipment

Substations → Housed Equipment

Parts of weather systems (relative to equipment)

Grid Monitoring Applications?

Example Process for Principles

9. Capture operation requirements early in tool procurement or design

Involve operators throughout design process

Cognitive Engineering Laboratory

Prototype Design Evaluation

Recommendations

- 1. Our 9 principles can guide human performance improvements
- 2. Work Domain Analysis is a method for improving information system design
- 3. Involving end users is imperative in work tool design or procurement

Acknowledgements

- Len Johnson
- Dave Short
- Steven Ferenac
- Dave Devereaux
- Nikolina Kojic
- Nick Presutti
- Kim Warren
- The many operators interviewed

Ontario's Supply Mix: Changing!

*2015 Figures as of September 2015.

Due to rounding, numbers may not add up to 100.

Change?

Thank you.

Questions, comments?

Fiona F. Tran, MASc Student

fiona.tran@utoronto.ca

Antony Hilliard, Post-Doctoral Fellow anthill@mie.utoronto.ca

References

- Borst, C. (2015). Delft Ecological Design [Research Group Summary]. Retrieved March 18, 2016, from http://www.delftecologicaldesign.nl/
- Chase, W. G., & Simon, H. A. (1973). Perception in chess. *Cognitive Psychology*, *4*(1), 55-81. http://doi.org/10.1016/0010-0285(73)90004-2
- Groot, A. D. de. (1946). Thought and choice in chess. The Hague: Mouton.
- Hilliard, A., Tran, F. F., & Jamieson, G. A. (in press). Work Domain Analysis of Power Grid Operations. In N. A. Stanton (Ed.), Cognitive Work Analysis: Applications, extensions, and the future.
- Hugo, J., & Oxstrand, J. (2015). Example Work Domain Analysis for a Reference Sodium Fast Reactor (No. INL/EXT-15-34036) (p. 80). Idaho Falls, ID: Idaho National Laboratory Human Factors, Controls and Statistics Department. Retrieved from http://dx.doi.org/10.13140/RG.2.1.2845.4482
- Memisevic, R., Sanderson, P. M., Wong, W. B. L., Choudhury, S., & Li, X. (2007). Investigating human-system interaction with an integrated hydropower and market system simulator. *IEEE Transactions on Power Systems*, 22(2), 762-769.
- Naikar, N., & Sanderson, P. M. (2001). Evaluating design proposals for complex systems with work domain analysis. *Human Factors*, 43(4), 529-542.
- Naikar, N. (2013). Work domain analysis: concepts, guidelines, and cases. Boca Raton: CRC Press.
- Rasmussen, J., Pejtersen, A. M., & Goodstein, L. P. (1994). Cognitive systems engineering. New York: Wiley.
- Sauro, J. (2011). A practical guide to the System Usability Scale: Background, benchmarks, & best practices. Denver, CO: Measuring Usability LLC.
- Treadwell, A., & Naikar, N. (2014). The Application of Work Domain Analysis to Defining Australia's Air Combat Capability (No. DSTO-TR-2958). Defence Science and Technology Organisation (Australia). Air Operations Division. Retrieved from http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA611427